

Verificatie RDEC methodiek voor karakterisering asfaltvermoeiing

Jan Telman, Q-Consult Bedrijfskundig Adviseurs, 31 januari 2016 jan.telman@qconsult.nl; 06-2186 8549

1 Intro: karakterisering vermoeiing via de RDEC methodiek – de theorie

Voor de karakterisering van het vermoeiingsgedrag van een mengsel is door Shen & Carpenter een methodiek ontwikkeld gebaseerd op het verloop van de gedissipeerde energie bij herhaalde cyclische belasting van het proefstuk. De cyclische belasting kan worden opgelegd via de rek gestuurde vierpunts buigproef (4pb) of de via de spanning gestuurde cyclische indirecte trekproef (CY-ITT).

Hierbij wordt in theorie de gedissipeerde energie DE_n bij elke lastherhaling n gemeten en hiervan wordt de ratio RDEC (ratio of dissipated energy change) berekend volgens

 $RDEC_n = \frac{DE_{n+1} - DE_n}{DE_n}.$

De praktijk geeft aan dat de RDEC met het verloop van de proef vaak de volgende "badkuipcurve" vertoont.

Na een initiële fase I, komt het proefstuk in een stabiele fase II waar sprake is van een steady state met een constante ontwikkeling van schade. Daarna volgt een omslag naar fase III met een snel oplopende RDEC. Deze omslag geeft aan dat het proefstuk aan het bezwijken is en dat er een overgang is van microscheurtjes naar macroscheurtjes.

Parameters zijn:

- N_{f,micro}, het aantal lastherhalingen waarbij de overgang van fase II naar fase III plaatsvindt.
- PV = Plateau Value, de gemiddelde waarde voor de RDEC in fase II

De RDEC methodiek gaat uit van de veronderstelling dat de RDEC curve qua hoogte en lengte van fase II afhankelijk kan zijn van de gekozen proef en het belastingniveau daarbij, maar dat voor een bepaald mengsel de PV-waarden versus de N_{f,micro} – onafhankelijk van methodiek en belastingniveau – op dezelfde rechte lijn liggen. Bijvoorbeeld zoals in onderstaande figuur (uit Miao-Miao e.a., 2013, Research Journal of Applied Sciences, Engineering and Technology). Dit geeft aan dat de RDEC methodiek fundamentele parameters geeft voor vermoeiing van asfalt.

Figuur 2. Rechtlijnig verband tussen PV en N_{f,micro} op log-log schaal.

2 Verloop van DE en RDEC in de meetproeven; de praktijk

Om de hierboven beschreven theorie te onderbouwen zijn proeven uitgevoerd met zowel de vierpunts buigproef (4pb) als de cyclische indirecte trekproef (CY-ITT). Er zijn 2 mengsels onderzocht:

- 252, voluit B-90 252 AC 22 BASE 40/60 60%PR
- 938, voluit B-90 938 AC 22 BASE SFB5-50HT 60%PR

2.1 Beschikbare meetdata

Voor beide mengsels zijn proeven uitgevoerd op een aantal proefstukken met een variërende belasting, met zowel de 4punts buigproef (4pb) als de cyclische indirecte trekproef (CY-ITT).

Bij de <u>4pb</u> levert dat i.h.a. een dalende S-vormige curve voor de gedissipeerde energie DE op, zoals bijvoorbeeld weergegeven in Figuur 3. Afhankelijk van de opgelegde rek ligt voor andere proefstukken de curve wat hoger of lager en kan een deel van de S-vorm ontbreken. De curve is wel altijd dalend, zodat de waarden voor RDEC en dus ook de PV negatief zijn. In de berekening van de RDEC is de absolute waarde genomen. Het omslagpunt N_{f,micro} (rode punt) is bepaald als het aantal cycli waarbij de cumulatieve som van de DE minimaal is. De PV is berekend als de waarde van RDEC bij N_{f,micro}.

Figuur 3. Voorbeeld van een resultaat voor de vierpunts buigproef

Bij de <u>CY-ITT</u> wordt i.h.a. een stijgende S-vormige curve voor de gedissipeerde energie DE gevonden, zoals bijvoorbeeld weergegeven in Figuur 4. Afhankelijk van de opgelegde spanning ligt voor andere proefstukken de curve wat hoger of lager en kan een deel van de S-vorm ontbreken. De curve is stijgend, zodat de waarden voor RDEC en dus ook voor de PV altijd positief zijn. De parameters N_{f,micro} en PV zijn weer bepaald op dezelfde wijze als bij de 4pb.

Figuur 4. Voorbeeld van een resultaat voor de CY-ITT.

De grafieken van alle uitgevoerde proeven staan in bijlage 1. Opvallend is dat voor alle 4pb proeven de gedissipeerde energie een dalend verloop heeft, en voor alle CY-ITT proeven stijgende lijnen te zien zijn. De "badkuipcurve" voor de RDEC is soms wel, maar vaker niet goed te zien.

Een overzicht van alle resultaten is weergegeven in onderstaande Tabel 1. De kolommen met de interessante parameters zijn weergegeven met een grijze opvulling van de kop. Voor de leesbaarheid is de PV weergegeven als de waarde maal 10⁻⁶. De tabel is per mengsel gesorteerd naar oplopend niveau van de rek of de spanning.

Bij de 4pb (bovenste helft van de tabel) zijn beide mengsels beproefd bij 3 rekniveaus. In het algemeen zien we bij een oplopend rekniveau een stijging in PV en een daling in N_{f,micro}. Bij mengsel 938 zien we bij 2 monsters (oranje gemarkeerd) een uitzondering op dit verloop.

Bij de CY-ITT (onderste helft van de tabel) zijn beide mengsels beproefd met een oplopend spanningsniveau. In het algemeen neemt daarbij de N_{f.micro} af en de PV neemt toe. Uitzonderingen op dit beeld zijn gemarkeerd met een oranje invulling.

										RDEC	
			Breedte	Hoogte	Dichtheid	3		PV		@Nf;macro	
proef	mengsel	sample	[mm]	[mm]	[kg/m3]	[µm/m]	Nf;micro	(*10^-6)	Nf;macro	(*10^-6)	N0.5G*
4pb	B-90 252 - AC 22 BASE 40/60 60%PR	161215	50,7	50,7	2344	106,1	1.136.322	1,00	1.418.626	18,10	1.205.340
		161212	50,1	50,0	2377	106,2	1.136.322	0,12	1.259.138	6,41	1.194.840
		161200	50,6	50,5	2349	106,4	1.076.553	1,11	1.176.780	14,40	1.101.060
		161202	50,5	50,0	2340	151,2	114.252	7,88	137.881	32,76	129.010
		161201	50,6	50,3	2352	151,5	83.837	5,95	142.787	39,41	99.880
		161214	50,8	50,6	2342	201,0	53.265	9,37	79.761	51,84	66.030
		161197	50,2	50,4	2376	201,2	30.703	10,17	56.823	48,27	42.210
		161213	50,7	50,5	2334	201,3	46.391	10,10	71.820	45,82	55.050
	B-90 938 - AC 22 BASE SFB5-50HT 60%PR	161228	49,9	50,1	2407	149,6	1.733.299	0,29	1.886.597	3,40	1.377.440
		161340	50,5	50,7	2353	150,2	75.755	7,97	100.823	26,42	86.750
		161227	50,4	50,2	2399	151,7	707.665	2,61	1.311.574	60,97	723.940
		161225	50,6	50,6	2389	201,1	211.682	3,02	270.693	20,33	223.080
		161240	49,9	50,1	2375	201,6	25.075	20,67	30.703	79,01	28.590
		161239	50,1	50,2	2357	201,7	8.797	32,70	15.066	74,39	13.570
		161241	50,0	50,2	2365	251,5	5.312	61,32	6.978	158,19	7.490
		161238	50,1	50,1	2363	251,6	36.711	12,14	56.823	53,28	35.810
	B-90 252-AC22BASE 40/6060%PR	161216	149,8	60,3	2365	23,4	476.935	8,18	533.272	269,49	394.349
		161204	149,9	60,3	2354	23,5	386.537	20,02	650	744,60	312.106
СУ-ІТТ		161207	149,8	60,1	2358	24,4	389.776	5,33	412.690	150,01	335.467
		161210	149,8	60,4	2359	48,8	54.670	78,26	59.962	902,33	44.525
		161205	149,8	59,7	2347	55,7	46.204	87,65	52.941	3.002,42	38.058
		161209	149,8	60,0	2352	108,5	3.558	501,87	4.306	9.575,54	3.604
		161220	149,8	60,3	2343	110,1	4.306	194,46	5.933	1.401,84	5.031
		161219	149,8	60,1	2351	113,4	1.622	87,16	4.306	242,10	5.098
	0 938 - AC BASE SFB5- HT 60%PR	161233	149,8	60,0	2359	35,7	351.477	19,09	370.470	92,48	269.444
		161242	149,8	60,4	2369	54,9	47.861	17,22	52.941	4.481,21	52.904
		161231	149,9	60,0	2361	, 79,6	16.206	26,14	22.434	712,97	18.126
		161234	149,8	60,2	2375	85,2	17.399	55,40	22.434	392,27	18.802
	B-9 22 50	161232	149,8	60,1	2377	106,3	4.306	161,71	6.807	982,42	5.733

Tabel 1. Resultaten voor N_{f,micro} en PV.

2.2 Schatting van de relatie PV versus N_{f,micro} op log-log schaal

Voor bovengenoemde gegevens zijn – afzonderlijk voor beide mengsels – regressielijnen gefit. Daarbij is getoetst of een model met één gezamenlijke regressielijn voor de data uit beide proeven net zo goed past als een model met afzonderlijke regressielijnen per proef. Dat zou immers een bevestiging zijn voor de theorie dat de RDEC een fundamentele karakterisering van de asfalt levensduur geeft.

Hiervoor is in de statistiek een F-toets beschikbaar voor zogenaamde geneste regressiemodellen. Getoetst wordt of de restspreiding in het gereduceerde model (d.w.z. coëfficiënten voor beide proeven gelijk) significant groter is dan de restspreiding in het volledige model (met afzonderlijke coëfficiënten voor beide proeven).

Voor het mengsel 252 werd bij deze toetsing een p-waarde 0,004 gevonden. Dat wil zeggen dat de spreiding in de data significant beter wordt beschreven door een model met aparte regressielijnen per proef, dan met een model met een gemeenschappelijke regressielijn voor 4pb en CY-ITT. Het volledige model met aparte regressielijnen verklaart 85,3% van de variantie ($R^2 = 88,2\%$), het gereduceerde model met een gemeenschappelijke regressielijn vor verklaart 67,8% van de variantie ($R^2 = 69,9\%$).

De resultaten zijn weergegeven in onderstaande tabel en figuur. De data voor de CY-ITT vertonen een flauwere helling dan die voor de 4pb.

	volledi	gereduceerd	
	4pb	CY-ITT	combi
intercept	-0,694	-1,633	-0,687
helling	-0,920	-0,579	-0,858

Tabel 2. Parameters voor de relatie log_PV versus log_Nf,micro voor mengsel 252.

Figuur 5. Regressiemodellen voor mengsel 252.

Voor het mengsel 938 werd bij deze toetsing een p-waarde 0,016 gevonden. Dat wil zeggen dat ook hier de spreiding in de data significant beter wordt beschreven door een model met aparte regressielijnen per proef, dan met een model met een gemeenschappelijke regressielijn voor 4pb en CY-ITT.

Het volledige model met aparte regressielijnen verklaart 89,8% van de variantie ($R^2 = 92,3\%$), het gereduceerde model met een gemeenschappelijke regressielijn verklaart 79,1% van de variantie ($R^2 = 80,8\%$).

De resultaten zijn weergegeven in onderstaande tabel en figuur. De data voor de CY-ITT vertonen een flauwere helling dan die voor de 4pb.

	volledig	gereduceerd		
	4pb	CY-ITT	combi	
intercept	-1,195	-2,402	-1,193	
helling	-0,808	-0,453	-0,778	

938 log(Nf) 2 3 6 7 0 1 Δ 5 0 -1 -2 4pb CY-ITT -3 4pb log(PV) -4 CY-ITT ---combi -5 -6 -7 -8

Tabel 3. Parameters voor de relatie log_PV versus log_Nf,micro voor mengsel 938.

De tussentijdse conclusie is dus dat het niet goed lukt om de data van zowel de 4pb als de CY-ITT in één regressielijn te vangen. Een mogelijke oorzaak ligt in de bepaling van de parameters PV en N_{f,micro}.

Zo is in Figuur 5 het afwijkende punt rechtsonder voor de 4pb gemeten voor monster 161212 van mengsel 252. In de figuren in bijlage 1 is af te lezen dat bij dit monster de $N_{f,micro}$ redelijk goed is gekozen aan het eind van de badkuip, maar dat de PV zeker een factor 10 te laag is (is nu gekozen als de RDEC waarde bij $N_{f,micro}$ maar moet het gemiddelde zijn van het vlakke niveau in de badkuip). Correctie zou dit punt dus ongeveer 1 schaalpunt omhoog brengen.

Figuur 6. Regressiemodellen voor mengsel 938.

In Figuur 6 lijkt het meest rechtse punt van de CY-ITT afwijkend, horend bij monster 161233, afwijkend. In de figuren in bijlage 1 is te zien dat bij dit monster de PV juist te hoog is ingeschat. Correctie zou dit punt omlaag, meer in de puntenwolk, trekken.

In het volgende hoofdstuk wordt meer theoretisch ingegaan op de berekening van de RDEC curve en de parameters PV en $N_{f,micro}$.

3 Berekeningsmethodiek van de parameters PV en N_{f,micro}

3.1 Terugvertaling van constant verlopende RDEC in fase II naar het verloop van de gedissipeerde energie

Als de RDEC in fase II een constant verloop vertoont op waarde C (= PV), dan impliceert dit dat gedurende deze fase de gedissipeerde energie exponentieel verloopt met het aantal lastherhalingen n.

Wiskundige omrekening van $RDEC_n = \frac{DE_{n+1}-DE_n}{DE_n} = C$ levert namelijk op

 $DE_{n+1} = DE_n \times (C + 1)$, en dit kan iteratief verder worden doorgerekend naar

 $DE_n = DE_1 \times (C+1)^n$

Dit is een exponentiële curve tegen het aantal lastcycli n, die

- stijgend is als C > 0
- vlak loopt als C = 0
- dalend is als C < 0

Hoe dit er grafisch uitziet, is af te lezen in onderstaande Figuur 7. Getekend is $Y = R^X$, met R = C+1 en de waarden van C (klein positief of klein negatief) in de legenda.

Figuur 7. Exponentieel verloop, afhankelijk van de waarde van C (legenda)

Een mogelijke aanpak is om een stijgend (bij CY-ITT) of dalend (bij 4pb) exponentieel stuk te herkennen in de DE-curve voor de uitgevoerde proeven. Uit dit exponentiele stuk wordt het grondtal C+1 van de exponent geschat, en vervolgens de plateau value PV = C berekend. De N_{f,micro} is dan het hoogste aantal lastherhalingen binnen het proefbereik waar de exponentiele curve nog past. Hier wordt verder op ingegaan in paragraaf 3.3.

3.2 Sampling van de meetmomenten voor de gedissipeerde energie

In de praktijk wordt de gedissipeerde energie DE_n niet bij elk van de vele (orde 10⁶) lastherhalingen gemeten, maar bij een steekproef van meetmomenten, waarbij de meetmomenten meer uit elkaar gaan liggen naarmate het aantal lastherhalingen groter wordt. De berekening van de RDEC op het n^e meetmoment verloopt dan als volgt:

 $RDEC_n = \frac{DE_{n+1} - DE_n}{(N_{n+1} - N_n)DE_n}$, waarbij N_n het aantal lastherhalingen is op het n^e meetmoment.

Theoretisch heeft het samplen van de meetmomenten een effect op de berekening van de plateauwaarde PV.

Meetkundig kun je dit als volgt inzien. Als de meetmomenten bij elke cyclus zijn, dan is de RDEC meetkundig gelijk aan de helling van de lijn door 2 opeenvolgende punten op de exponentiële curve (zie bijvoorbeeld Figuur 7), gedeeld door de waarde van DE bij de eerste van het tweetal metingen.

Als de meetmomenten op een steekproef met een tussenruimte van d cycli worden genomen, dan neem je bij de berekening van de helling in feite de 'binnenbocht' op de DE curve. Ten opzichte van de situatie met meetpunten op elke cyclus is het effect als volgt:

- Bij een stijgende curve (CY-ITT) wordt de berekende helling in die binnenbocht groter, d.w.z. nog meer positief → bij CY-ITT proeven wordt bij sampling de PV dus overschat.
- Bij een dalende curve (4pb) wordt de berekende helling in die binnenbocht ook groter, d.w.z. wat minder negatief. Omdat de absolute waarde wordt berekend, kom je nu dus lager uit → bij 4pb proeven wordt bij sampling de PV dus onderschat.

Rekenkundig kan worden aangetoond dat bij een tussenruimte van d cycli tussen opeenvolgende meetmomenten, dus $N_{n+1} - N_n = d$, het combineren van bovenstaande RDEC formule en de exponentiële vergelijking $DE_n = DE_1 \times (C+1)^n$ leidt tot

 $RDEC_n = \frac{(C+1)^d - 1}{d}.$

Voor d = 1 volgt hieruit gewoon weer RDEC = C. Voor grotere afstanden d tussen de meetpunten is er een afwijking in de berekening die ook nog afhangt van de PV-waarde C. In onderstaande Figuur 8 is de relatie tussen de relatieve afwijking in de berekening van de PV en de sampling afstand d uitgezet voor een drietal waarden van de werkelijke PV-waarde (legenda).

Bij de huidige proeven lag de sampling afstand ongeveer op d = 2000. De PV-waarden lagen ongeveer op 10^{-5} bij de 4pb en ongeveer op 10^{-4} bij CY-ITT. De conclusie is dat de sampling weinig effect heeft op de waarden bij de 4pb proef (oranje lijn), maar wel een overschatting van de PV waarde geeft bij de CY-ITT proef (blauwe lijn). Bij d = 2000 bedraagt deze overschatting ruim 10%.

In de uiteindelijke PV versus N_{f,ini} grafieken van Figuur 5 en Figuur 6 liggen de punten voor de CY-ITT dus allemaal iets te hoog. Op log10-schaal doet 10% overschatting van de PV echter niet zo veel, immers log(PV*1,10) = log(PV) + log(1,10) = log(PV) + 0,04. Deze verschuiving in verticale richting is verwaarloosbaar.

Figuur 8. Relatieve afwijking in de berekende PV-waarde bij sampling van de DE meting, afhankelijk van de werkelijke PV-waarde (legenda).

3.3 Berekeningswijze van de parameters in de RDEC methodiek

In de RDEC-methodiek zijn de parameters:

- N_{f,micro}, het aantal lastherhalingen waarbij de overgang van fase II (constante RDEC) naar fase III (stijgende RDEC) plaatsvindt.
- PV = Plateau Value, de gemiddelde waarde voor de RDEC in fase II

Bij de doorrekening van de meetresultaten in hoofdstuk 2 zijn deze parameters als volgt berekend:

- N_{f,micro} = het aantal lastherhalingen waarbij de cumulatieve som van de gedissipeerde energie DE minimaal is
- PV = de waarde van RDEC als het aantal lastherhalingen gelijk is aan N_{f,micro}

Een meer zuivere aanpak is het fitten van een exponentiele curve van de DE als functie van het aantal cycli n. Op deze wijze wordt zuiverder omgegaan met de meetruis, en treedt er geen bias op door de sampling van de metingen (zie paragraaf 3.2). De motivatie voor deze aanpak is dat in fase II -- met een constante RDEC – de DE exponentieel verloopt. Zie hiervoor Figuur 7 in paragraaf 3.1.

In genoemde figuur starten alle exponentiële curves in het punt (0, 1). In de praktijk start de DE-curve mogelijk met een stuk in fase I en start de exponentiele curve op de horizontale as dus op een moment n₀, dat we kiezen midden tussen het laatste punt in fase I en het eerste punt van wat we inschatten dat fase II is. Praktisch dus een horizontale verschuiving (naar rechts) van de grafiek ter grootte n₀. Dat betekent dat de relatie Y = R^X verandert in Y = R^{X-n0}. Ook in verticale richting starten we in de praktijk natuurlijk niet op 1, maar op het niveau DE₀. Dus de uiteindelijk te fitten relatie is Y = DE₀ × R^{X-n0}.

Praktisch is de aanpak als volgt:

- Neem een aantal (orde wortel van het totaal) meetpunten met n en DE in het midden van het bereik van de lastherhalingen
- Fit op dit deel van het meetbereik de exponentiële curve $DE = b \times R^n$
- Onderzoek nu stapsgewijs de uitbreiding van het meetbereik naar beneden en naar boven, door herhaald de volgende stappen te doorlopen
 - kijk of de DE-waarde bij het aantal meetcycli net *boven* het meetbereik binnen de betrouwbaarheidsmarge ten opzichte van de volgens de exponentiele curve voorspelde waarde ligt
 - als dit waar is, dan kan dit meetpunt worden toegevoegd aan het exponentiele deel van de DE curve; m.a.w. dit meetpunt ligt nog in fase II van een constante RDEC
 - kijk of de DE-waarde bij het aantal meetcycli net *onder* het meetbereik binnen de betrouwbaarheidsmarge ten opzichte van de volgens de exponentiele curve voorspelde waarde ligt

- als dit waar is, dan kan dit meetpunt worden toegevoegd aan het exponentiele deel van de DE curve; m.a.w. dit meetpunt ligt nog in fase II van een constante RDEC
- Zodra geen punten meer kunnen worden toegevoegd, stopt het algoritme en worden berekend:
 - **PV** = R-1
 - N_{f,micro} = het gemiddelde van de hoogste n-waarde binnen het meetbereik en de eerstvolgende n-waarde net buiten het meetbereik.

Bijlage 1. Meetresultaten: curves voor gedissipeerde energie (licht, rechter verticale as) en RDEC (donker, linker verticale as); per proef, per mengsel. Monsternummers linksonder.

Figuur 9. Resultaten 4pb, mengsel 252.

12

Figuur 10. Resultaten 4pb, mengsel 938.

Figuur 11. Resultaten CY-ITT, mengsel 252.

Figuur 12. Resultaten CY-ITT, mengsel 938.